13 resultados para receptor-aggregation

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Killer cell inhibitory receptors (KIR) protect class I HLAs expressing target cells from natural killer (NK) cell-mediated lysis. To understand the molecular basis of this receptor-ligand recognition, we have crystallized the extracellular ligand-binding domains of KIR2DL2, a member of the Ig superfamily receptors that recognize HLA-Cw1, 3, 7, and 8 allotypes. The structure was determined in two different crystal forms, an orthorhombic P212121 and a trigonal P3221 space group, to resolutions of 3.0 and 2.9 Å, respectively. The overall fold of this structure, like KIR2DL1, exhibits K-type Ig topology with cis-proline residues in both domains that define β-strand switching, which sets KIR apart from the C2-type hematopoietic growth hormone receptor fold. The hinge angle of KIR2DL2 is approximately 80°, 14° larger than that observed in KIR2DL1 despite the existence of conserved hydrophobic residues near the hinge region. There is also a 5° difference in the observed hinge angles in two crystal forms of 2DL2, suggesting that the interdomain hinge angle is not fixed. The putative ligand-binding site is formed by residues from several variable loops with charge distribution apparently complementary to that of HLA-C. The packing of the receptors in the orthorhombic crystal form offers an intriguing model for receptor aggregation on the cell surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rat basophilic leukemia (RBL-2H3) cells predominantly express the type II receptor for inositol 1,4,5-trisphosphate (InsP3), which operates as an InsP3-gated calcium channel. In these cells, cross-linking the high-affinity immunoglobulin E receptor (FcεR1) leads to activation of phospholipase C γ isoforms via tyrosine kinase- and phosphatidylinositol 3-kinase-dependent pathways, release of InsP3-sensitive intracellular Ca2+ stores, and a sustained phase of Ca2+ influx. These events are accompanied by a redistribution of type II InsP3 receptors within the endoplasmic reticulum and nuclear envelope, from a diffuse pattern with a few small aggregates in resting cells to large isolated clusters after antigen stimulation. Redistribution of type II InsP3 receptors is also seen after treatment of RBL-2H3 cells with ionomycin or thapsigargin. InsP3 receptor clustering occurs within 5–10 min of stimulus and persists for up to 1 h in the presence of antigen. Receptor clustering is independent of endoplasmic reticulum vesiculation, which occurs only at ionomycin concentrations >1 μM, and maximal clustering responses are dependent on the presence of extracellular calcium. InsP3 receptor aggregation may be a characteristic cellular response to Ca2+-mobilizing ligands, because similar results are seen after activation of phospholipase C-linked G-protein-coupled receptors; cholecystokinin causes type II receptor redistribution in rat pancreatoma AR4–2J cells, and carbachol causes type III receptor redistribution in muscarinic receptor-expressing hamster lung fibroblast E36M3R cells. Stimulation of these three cell types leads to a reduction in InsP3 receptor levels only in AR4–2J cells, indicating that receptor clustering does not correlate with receptor down-regulation. The calcium-dependent aggregation of InsP3 receptors may contribute to the previously observed changes in affinity for InsP3 in the presence of elevated Ca2+ and/or may establish discrete regions within refilled stores with varying capacity to release Ca2+ when a subsequent stimulus results in production of InsP3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detergent-resistant plasma membrane structures, such as caveolae, have been implicated in signalling, transport, and vesicle trafficking functions. Using sucrose gradient ultracentrifugation, we have isolated low-density, Triton X-100-insoluble membrane domains from RBL-2H3 mucosal mast cells that contain several markers common to caveolae, including a src-family tyrosine kinase, p53/56lyn. Aggregation of Fc epsilon RI, the high-affinity IgE receptor, causes a significant increase in the amount of p53/56lyn associated with these low-density membrane domains. Under our standard conditions for lysis, IgE-Fc epsilon RI fractionates with the majority of the solubilized proteins, whereas aggregated receptor complexes are found at a higher density in the gradient. Stimulated translocation of p53/56lyn is accompanied by increased tyrosine phosphorylation of several proteins in the low-density membrane domains as well as enhanced in vitro tyrosine kinase activity toward these proteins and an exogenous substrate. With a lower detergent-to-cell ratio during lysis, significant Fc epsilon RI remains associated with these membrane domains, consistent with the ability to coimmunoprecipitate tyrosine kinase activity with Fc epsilon RI under similar lysis conditions [Pribluda, V. S., Pribluda, C. & Metzger, H. (1994) Proc. Natl. Acad. Sci. USA 91, 11246-11250]. These results indicate that specialized membrane domains may be directly involved in the coupling of receptor aggregation to the activation of signaling events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protease-activated receptors (PARs) represent a unique family of seven-transmembrane G protein-coupled receptors, which are enzymatically cleaved to expose a truncated extracellular N terminus that acts as a tethered activating ligand. PAR-1 is cleaved and activated by the serine protease α-thrombin, is expressed in various tissues (e.g., platelets and vascular cells), and is involved in cellular responses associated with hemostasis, proliferation, and tissue injury. We have discovered a series of potent peptide-mimetic antagonists of PAR-1, exemplified by RWJ-56110. Spatial relationships between important functional groups of the PAR-1 agonist peptide epitope SFLLRN were employed to design and synthesize candidate ligands with appropriate groups attached to a rigid molecular scaffold. Prototype RWJ-53052 was identified and optimized via solid-phase parallel synthesis of chemical libraries. RWJ-56110 emerged as a potent, selective PAR-1 antagonist, devoid of PAR-1 agonist and thrombin inhibitory activity. It binds to PAR-1, interferes with PAR-1 calcium mobilization and cellular function (platelet aggregation; cell proliferation), and has no effect on PAR-2, PAR-3, or PAR-4. By flow cytometry, RWJ-56110 was confirmed as a direct inhibitor of PAR-1 activation and internalization, without affecting N-terminal cleavage. At high concentrations of α-thrombin, RWJ-56110 fully blocked activation responses in human vascular cells, albeit not in human platelets; whereas, at high concentrations of SFLLRN-NH2, RWJ-56110 blocked activation responses in both cell types. Thus, thrombin activates human platelets independently of PAR-1, i.e., through PAR-4, which we confirmed by PCR analysis. Selective PAR-1 antagonists, such as RWJ-56110, should serve as useful tools to study PARs and may have therapeutic potential for treating thrombosis and restenosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whereas it is relatively easy to account for the formation of concentric (target) waves of cAMP in the course of Dictyostelium discoideum aggregation after starvation, the origin of spiral waves remains obscure. We investigate a physiologically plausible mechanism for the spontaneous formation of spiral waves of cAMP in D. discoideum. The scenario relies on the developmental path associated with the continuous changes in the activity of enzymes such as adenylate cyclase and phosphodiesterase observed during the hours that follow starvation. These changes bring the cells successively from a nonexcitable state to an excitable state in which they relay suprathreshold cAMP pulses, and then to autonomous oscillations of cAMP, before the system returns to an excitable state. By analyzing a model for cAMP signaling based on receptor desensitization, we show that the desynchronization of cells on this developmental path triggers the formation of fully developed spirals of cAMP. Developmental paths that do not correspond to the sequence of dynamic transitions no relay-relay-oscillations-relay are less able or fail to give rise to the formation of spirals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of integrins to mediate cell attachment to extracellular matrices and to blood proteins is regulated from inside the cell. Increased ligand-binding activity of integrins is critical for platelet aggregation upon blood clotting and for leukocyte extravasation to inflamed tissues. Decreased adhesion is thought to promote tumor cell invasion. R-Ras, a small intracellular GTPase, regulates the binding of integrins to their ligands outside the cell. Here we show that the Eph receptor tyrosine kinase, EphB2, can control integrin activity through R-Ras. Cells in which EphB2 is activated become poorly adherent to substrates coated with integrin ligands, and a tyrosine residue in the R-Ras effector domain is phosphorylated. The R-Ras phosphorylation and loss of cell adhesion are causally related, because forced expression of an R-Ras variant resistant to phosphorylation at the critical site made cells unresponsive to the anti-adhesive effect of EphB2. This is an unusual regulatory pathway among the small GTPases. Reduced adhesiveness induced through the Eph/R-Ras pathway may explain the repulsive effect of the Eph receptors in axonal pathfinding and may facilitate tumor cell invasion and angiogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell death is mediated by distinct pathways including apoptosis and oncosis in response to various death signals. To characterize molecules involved in cell death, a panel of mAbs was raised by immunizing mice with apoptotic cells. One of these antibodies, designated anti-Porimin (for pro-oncosis receptor inducing membrane injury), was found to directly induce a unique type of cell death in Jurkat cells. Anti-Porimin defines a 110-kDa cell surface receptor on Jurkat cells. Functionally, anti-Porimin alone rapidly mediates pore formation on the plasma membrane and induces cell death without participation of complement. Both the cellular expression and functional characteristics of the Porimin antigen indicate that it is distinct from the CD95 (Fas/Apo-1) and other cell receptors known to induce apoptosis. Anti-Porimin-mediated cell death was preceded by cell aggregation, formation of plasma membrane pores, and the appearance of membrane blebs. More important, these cells show neither DNA fragmentation nor apoptotic bodies, but display lethal damage of the cell membrane. Cell death by anti-Porimin is distinct from complement-dependent cytolysis or complement-independent apoptosis but is similar to that described for oncosis, a form of cell death accompanied by the membrane damage followed by karyolysis. The induction of cell death by anti-Porimin may represent a unique cell surface receptor-mediated pathway of cell death in the human lymphoid system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patterns in sequences of amino acid hydrophobic free energies predict secondary structures in proteins. In protein folding, matches in hydrophobic free energy statistical wavelengths appear to contribute to selective aggregation of secondary structures in “hydrophobic zippers.” In a similar setting, the use of Fourier analysis to characterize the dominant statistical wavelengths of peptide ligands’ and receptor proteins’ hydrophobic modes to predict such matches has been limited by the aliasing and end effects of short peptide lengths, as well as the broad-band, mode multiplicity of many of their frequency (power) spectra. In addition, the sequence locations of the matching modes are lost in this transformation. We make new use of three techniques to address these difficulties: (i) eigenfunction construction from the linear decomposition of the lagged covariance matrices of the ligands and receptors as hydrophobic free energy sequences; (ii) maximum entropy, complex poles power spectra, which select the dominant modes of the hydrophobic free energy sequences or their eigenfunctions; and (iii) discrete, best bases, trigonometric wavelet transformations, which confirm the dominant spectral frequencies of the eigenfunctions and locate them as (absolute valued) moduli in the peptide or receptor sequence. The leading eigenfunction of the covariance matrix of a transmembrane receptor sequence locates the same transmembrane segments seen in n-block-averaged hydropathy plots while leaving the remaining hydrophobic modes unsmoothed and available for further analyses as secondary eigenfunctions. In these receptor eigenfunctions, we find a set of statistical wavelength matches between peptide ligands and their G-protein and tyrosine kinase coupled receptors, ranging across examples from 13.10 amino acids in acid fibroblast growth factor to 2.18 residues in corticotropin releasing factor. We find that the wavelet-located receptor modes in the extracellular loops are compatible with studies of receptor chimeric exchanges and point mutations. A nonbinding corticotropin-releasing factor receptor mutant is shown to have lost the signatory mode common to the normal receptor and its ligand. Hydrophobic free energy eigenfunctions and their transformations offer new quantitative physical homologies in database searches for peptide-receptor matches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycoprotein (GP) V is a major substrate cleaved by the protease thrombin during thrombin-induced platelet activation. Previous analysis of platelets from GP V-null mice suggested a role for GP V as a negative modulator of platelet activation by thrombin. We now report the mechanism by which thrombin activates GP V −/− platelets. We show that proteolytically inactive forms of thrombin induce robust stimulatory responses in GP V null mouse platelets, via the platelet GP Ib–IX–V complex. Because proteolytically inactive thrombin can activate wild-type mouse and human platelets after treatment with thrombin to cleave GP V, this mechanism is involved in thrombin-induced platelet aggregation. Platelet activation through GP Ib–IX depends on ADP secretion, and specific inhibitors demonstrate that the recently cloned P2Y12 ADP receptor (Gi-coupled ADP receptor) is involved in this pathway, and that the P2Y1 receptor (Gq-coupled ADP receptor) may play a less significant role. Thrombosis was generated in GP V null mice only in response to catalytically inactive thrombin, whereas thrombosis occurred in both genotypes (wild type and GP V null) in response to active thrombin. These data support a thrombin receptor function for the platelet membrane GP Ib–IX–V complex, and describe a novel thrombin signaling mechanism involving an initiating proteolytic event followed by stimulation of the GP Ib–IX via thrombin acting as a ligand, resulting in platelet activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melanin-concentrating hormone (MCH) is a 19-aa cyclic neuropeptide originally isolated from chum salmon pituitaries. Besides its effects on the aggregation of melanophores in fish several lines of evidence suggest that in mammals MCH functions as a regulator of energy homeostasis. Recently, several groups reported the identification of an orphan G protein-coupled receptor as a receptor for MCH (MCH-1R). We hereby report the identification of a second human MCH receptor termed MCH-2R, which shares about 38% amino acid identity with MCH-1R. MCH-2R displayed high-affinity MCH binding, resulting in inositol phosphate turnover and release of intracellular calcium in mammalian cells. In contrast to MCH-1R, MCH-2R signaling is not sensitive to pertussis toxin and MCH-2R cannot reduce forskolin-stimulated cAMP production, suggesting an exclusive Gαq coupling of the MCH-2R in cell-based systems. Northern blot and in situ hybridization analysis of human and monkey tissue shows that expression of MCH-2R mRNA is restricted to several regions of the brain, including the arcuate nucleus and the ventral medial hypothalamus, areas implicated in regulation of body weight. In addition, the human MCH-2R gene was mapped to the long arm of chromosome 6 at band 6q16.2–16.3, a region reported to be associated with cytogenetic abnormalities of obese patients. The characterization of a second mammalian G protein-coupled receptor for MCH potentially indicates that the control of energy homeostasis in mammals by the MCH neuropeptide system may be more complex than initially anticipated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Latent infection membrane protein 1 (LMP1), the Epstein-Barr virus transforming protein, associates with tumor necrosis factor receptor (TNFR) associated factor 1 (TRAF1) and TRAF3. Since TRAF2 has been implicated in TNFR-mediated NF-kappa B activation, we have evaluated the role of TRAF2 in LMP1-mediated NF-kappa B activation. TRAF2 binds in vitro to the LMP1 carboxyl-terminal cytoplasmic domain (CT), coprecipitates with LMP1 in B lymphoblasts, and relocalizes to LMP1 plasma membrane patches. A dominant negative TRAF2 deletion mutant that lacks amino acids 6-86 (TRAF/ delta 6-86) inhibits NF-kappa B activation from the LMP1 CT and competes with TRAF2 for LMP1 binding. TRAF2 delta 6-86 inhibits NF-kappa B activation mediated by the first 45 amino acids of the LMP1 CT by more than 75% but inhibits NF-kappa B activation through the last 55 amino acids of the CT by less than 40%. A TRAF interacting protein, TANK, inhibits NF-kappa B activation by more than 70% from both LMP1 CT domains. These data implicate TRAF2 aggregation in NF-kappa B activation by the first 45 amino acids of the LMP1 CT and suggest that a different TRAF-related pathway may be involved in NF-kappa B activation by the last 55 amino acids of the LMP1 CT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The epidermal growth factor receptor (EGFR) and p185c-neu proteins associate as dimers to create an efficient signaling assembly. Overexpression of these receptors together enhances their intrinsic kinase activity and concomitantly results in oncogenic cellular transformation. The ectodomain is able to stabilize the dimer, whereas the kinase domain mediates biological activity. Here we analyze potential interactions of the cytoplasmic kinase domains of the EGFR and p185c-neu tyrosine kinases by homology molecular modeling. This analysis indicates that kinase domains can associate as dimers and, based on intermolecular interaction calculations, that heterodimer formation is favored over homodimers. The study also predicts that the self-autophosphorylation sites located within the kinase domains are not likely to interfere with tyrosine kinase activity, but may regulate the selection of substrates, thereby modulating signal transduction. In addition, the models suggest that the kinase domains of EGFR and p185c-neu can undergo higher order aggregation such as the formation of tetramers. Formation of tetrameric complexes may explain some of the experimentally observed features of their ligand affinity and hetero-receptor internalization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionotropic glutamate receptors, neurotransmitter-activated ion channels that mediate excitatory synaptic transmission in the central nervous system, are oligomeric membrane proteins of unknown subunit stoichiometry. To determine the subunit stoichiometry we have used a functional assay based on the blockade of two alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate/kainate receptor subunit 1 (GluR1) mutant subunits selectively engineered to exhibit differential sensitivity to the open channel blockers phencyclidine and dizolcipine (MK-801). Coinjection into amphibian oocytes of weakly sensitive with highly sensitive subunit complementary RNAs produces functional heteromeric channels with mixed blocker sensitivities. Increasing the fraction of the highly sensitive subunit augmented the proportion of drug-sensitive receptors. Analysis of the data using a model based on random aggregation of receptor subunits allowed us to determine a pentameric stoichiometry for GluR1. This finding supports the view that a pentameric subunit organization underlies the structure of the neuronal ionotropic glutamate receptor gene family.